Production prediction based on ASGA-XGBoost in shale gas reservoir
Xin Zhou,
Qiquan Ran
Abstract:The advancement of horizontal drilling and hydraulic fracturing technologies has led to an increased significance of shale gas as a vital energy source. In the realm of oilfield development decisions, production forecast analysis stands as an essential aspect. Despite numerical simulation being a prevalent method for production prediction, its time-consuming nature is ill-suited for expeditious decision-making in oilfield development. Consequently, we present a data-driven model, ASGA-XGBoost, designed for rap… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.