Background
Benign prostatic hyperplasia (BPH) is a major health concern associated with lower urinary tract symptoms and sexual dysfunction in men. Recurrent inflammation, decreased apoptotic rate and oxidative stress are some of the theories that explain the pathophysiology of BPH. Common salt, a food additive, is known to cause systemic inflammation and redox imbalance, and may serve as a potential risk factor for BPH development or progression. This study examined the effect of common salt intake on the pathology of testosterone-induced BPH.
Methods
Forty male Wistar rats were randomly divided into four equal groups of 10: a control and three salt diet groups-low-salt diet (LSD), standard-salt diet (SSD) and high-salt diet (HSD). The rats were castrated, allowed to recuperate and placed on salt-free diet (control), 0.25% salt diet (LSD), 0.5% salt diet (SSD) and 1.25% salt diet (HSD) for 60 days ad libitum. On day 33, BPH was induced in all the rats with daily injections of testosterone propionate-Testost® (3 mg/kg body weight) for 28 days. The rats had overnight fast (12 h) on day 60 and were euthanized the following day in order to collect blood and prostate samples for biochemical, molecular and immunohistochemistry (IHC) analyses. Mean ± SD values were calculated for each group and compared for significant difference with ANOVA followed by post hoc test (Tukey HSD) at p < 0.05.
Results
This study recorded a substantially higher level of IL-6, IL-8 and COX-2 in salt diet groups and moderate IHC staining of COX-2 in HSD group. The prostatic level of IL-17, IL-1β, PGE2, relative prostate weight and serum PSA levels were not statistically different. The concentrations of IGF-1, TGF-β were similar in all the groups but there were multiple fold increase in Bcl-2 expression in salt diet groups-LSD (13.2), SSD (9.5) and HSD (7.9) and multiple fold decrease in VEGF expression in LSD (-6.3), SSD (-5.1) and HSD (-14.1) compared to control. Activity of superoxide dismutase (SOD) and concentration of nitric oxide rose in LSD and SSD groups, and SSD and HSD groups respectively. Activities of glutathione peroxidase and catalase, and concentration of NADPH and hydrogen peroxide were not significantly different. IHC showed positive immunostaining for iNOS expression in all the groups while histopathology revealed moderate to severe prostatic hyperplasia in salt diet groups.
Conclusions
These findings suggest that low, standard and high salt diets aggravated the pathology of testosterone-induced BPH in Wistar rats by promoting inflammation, oxidative stress, while suppressing apoptosis and angiogenesis.