Profile monitoring is an approach in quality control best used where the process data follow a profile (or curve). The majority of previous studies in profile monitoring focused on the parametric (P) modeling of either linear or nonlinear profiles, with both fixed and random effects, under the assumption of correct model specification. More recently, in the absence of an obvious P model, nonparametric (NP) methods have been employed in the profile monitoring context. For situations where a P model is adequate over part of the data but inadequate of other parts, we propose a semiparametric procedure that combines both P and NP profile fits. We refer to our semiparametric procedure as mixed model robust profile monitoring (MMRPM). These three methods (P, NP and MMRPM) can account for the autocorrelation within profiles and treat the collection of profiles as a random sample from a common population. For each approach, we propose a version of Hotelling's T 2 statistic for use in Phase I analysis to determine unusual profiles based on the estimated random effects and obtain the corresponding control limits. Simulation results show that our MMRPM method performs well in making decisions regarding outlying profiles when compared to methods based on a misspecified P model or based on NP regression. In addition, however, the MMRPM method is robust to model misspecification because it also performs well when compared to a correctly specified P model. The proposed chart is able to detect changes in Phase I data and has easily calculated control limits. We apply all three methods to the automobile engine data of Amiri et al. 5 and find that the NP and the MMRPM methods indicate signals that did not occur in a P approach.