Fast radio bursts (FRBs) are usually suggested to be associated with mergers of compact binaries consisting of white dwarfs (WDs), neutron stars (NSs), or black holes (BHs). We test these models by fitting the observational distributions in both redshift and isotropic energy of 22 Parkes FRBs, where, as usual, the rates of compact binary mergers (CBMs) are connected with cosmic star formation rates by a power-law distributed time delay. It is found that the observational distributions can well be produced by the CBM model with a characteristic delay time from several ten to several hundred Myr and an energy function index 1.2 γ 1.7, where a tentative fixed spectral index β = 0.8 is adopted for all FRBs. Correspondingly, the local event rate of FRBs is constrained to (3 − 6) × 10 4 f −1 b (T /270s) −1 (A/2π) −1 Gpc −3 yr −1 for an adopted minimum FRB energy of E min = 3 × 10 39 erg, where f b is the beaming factor of the radiation, T is the duration of each pointing observation, and A is the sky area of the survey. This event rate, about an order of magnitude higher than the rates of NS-NS/NS-BH mergers, indicates that the most promising origin of FRBs in the CBM scenario could be mergers of WD-WD binaries. Here a massive WD could be produced since no FRB was found to be associated with a type Ia supernova. Alternatively, if actually all FRBs can repeat on a timescale much longer than the period of current observations, then they could also originate from a young active NS that forms from relatively rare NS-NS mergers and accretion-induced collapses of WD-WD binaries.