Adaptations to climate change rely on understanding the dynamics of plant biomass stocks on the planet. The high levels of deforestation in Cerrado have transformed this biome into the second-largest Brazilian source of carbon emissions. The objective of this study was to develop a method to accurately estimate aboveground and total biomass values among shrublands, savannas, and forests located in the Cerrado biome, using an allometric equation adjusted from canopy height, obtained through optical and laser sensors. The results show similarity between the estimates employed by our method and the data found in the literature review for different phytophysiognomies in the Cerrado biome. Shrubland formations showed higher biomass estimation uncertainties due to the discontinuity of isolated trees and the lower canopy height when compared to more clustered tree canopies in savannas and taller canopies in forests. Aboveground biomass estimates were related to expansion factors, and specific maps were developed for each compartment by root, litter, and necromass. The sum of these compartments is presented in the aboveground and below forest biomass map. This study presents, for the first time, the mapping of total biomass in 10 m pixels of all regions of the Cerrado biome.