Prognostic estimation for acute ischemic stroke patients undergoing mechanical thrombectomy within an extended therapeutic window using an interpretable machine learning model
Lin Tong,
Yun Sun,
Yueqi Zhu
et al.
Abstract:BackgroundMechanical thrombectomy (MT) is effective for acute ischemic stroke with large vessel occlusion (AIS-LVO) within an extended therapeutic window. However, successful reperfusion does not guarantee positive prognosis, with around 40–50% of cases yielding favorable outcomes. Preoperative prediction of patient outcomes is essential to identify those who may benefit from MT. Although machine learning (ML) has shown promise in handling variables with non-linear relationships in prediction models, its “blac… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.