Pyroptosis is a form of programmed cell death mediated by gasdermins, particularly gasdermin D (GSDMD), which is widely expressed in tissues throughout the body. GSDMD belongs to the gasdermin family, which is expressed in a variety of cell types including epithelial cells and immune cells. It is involved in the regulation of anti-inflammatory responses, leading to its differential expression in a wide range of diseases. In this review, we provide an overview of the current understanding of the major activation mechanisms and effector pathways of GSDMD. Subsequently, we examine the importance and role of GSDMD in different diseases, highlighting its potential as a pan-biomarker. We specifically focus on the biological characteristics of GSDMD in several diseases and its promising role in diagnosis, early detection, and differential diagnosis. Furthermore, we discuss the application of GSDMD in predicting prognosis and monitoring treatment efficacy in cancer. This review proposes a new strategy to guide therapeutic decision-making and suggests potential directions for further research into GSDMD.