Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background T-cell-related genes play a crucial role in LIHC development. However, a reliable prognostic profile based on risk models of these genes has yet to be identified. Methods Single-cell datasets from both tumor and normal tissue samples were obtained from the GEO database. We identified T-cell marker genes and developed a genetic risk model using the TCGA-LIHC dataset, which was subsequently validated with an independent GEO dataset. We also explored the relationship between risk model predictions and immune responses. Results We constructed a prognostic risk model using eight gene features identified through screening 860 T-cell marker genes via scRNA-seq and RNA-seq, which was subsequently integrated with the TCGA dataset. Its validity was independently confirmed using GEO and ICGC datasets. The TCGA dataset was stratified into high-risk and low-risk groups based on the risk model. Multivariate Cox regression analysis confirmed the risk score as an independent prognostic factor. GSEA indicated ribosomal transporter metabolism enrichment in the high-risk group and significant transcriptional activation in the low-risk group. ESTIMATE analysis showed higher ESTIMATE, immune, and stromal scores in the low-risk group, which also exhibited lower tumor purity than the high-risk group. Immunophenotyping revealed distinct patterns of immune cell infiltration and an immunosuppressive environment in the high-risk group. Conclusions This study introduces a T-cell marker-based prognostic risk model for LIHC patients. This model effectively predicted survival outcomes and immunotherapy effectiveness in LIHC patients, aligning with diverse immune responses and the distinct immunological profiles observed in the high-risk group.
Background T-cell-related genes play a crucial role in LIHC development. However, a reliable prognostic profile based on risk models of these genes has yet to be identified. Methods Single-cell datasets from both tumor and normal tissue samples were obtained from the GEO database. We identified T-cell marker genes and developed a genetic risk model using the TCGA-LIHC dataset, which was subsequently validated with an independent GEO dataset. We also explored the relationship between risk model predictions and immune responses. Results We constructed a prognostic risk model using eight gene features identified through screening 860 T-cell marker genes via scRNA-seq and RNA-seq, which was subsequently integrated with the TCGA dataset. Its validity was independently confirmed using GEO and ICGC datasets. The TCGA dataset was stratified into high-risk and low-risk groups based on the risk model. Multivariate Cox regression analysis confirmed the risk score as an independent prognostic factor. GSEA indicated ribosomal transporter metabolism enrichment in the high-risk group and significant transcriptional activation in the low-risk group. ESTIMATE analysis showed higher ESTIMATE, immune, and stromal scores in the low-risk group, which also exhibited lower tumor purity than the high-risk group. Immunophenotyping revealed distinct patterns of immune cell infiltration and an immunosuppressive environment in the high-risk group. Conclusions This study introduces a T-cell marker-based prognostic risk model for LIHC patients. This model effectively predicted survival outcomes and immunotherapy effectiveness in LIHC patients, aligning with diverse immune responses and the distinct immunological profiles observed in the high-risk group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.