This paper proposes a reasoning framework to diagnose faults at the vehicle level in a complex machine like an aircraft. The current focus of Integrated Vehicle Health Management (IVHM) is on diagnosing and prognosing faults at the component and subsystem levels; only a few IVHM systems consider the interaction between the systems. To diagnose faults at the vehicle level, an IVHM System needs a framework that recognizes the causal relationships between systems and the likelihood of fault propagation between them. The framework should also possess an element of reasoning to assess data from all systems, to assign priorities, and to resolve ambiguities. The Framework for Aerospace VEhicle Reasoning (FAVER) that is proposed in this paper uses a digital twin of the aircraft systems to emulate functioning of the aircraft and to simulate the effect of fault propagation due to systems interactions. FAVER applies reasoning that can handle fault signatures from multiple systems in the form of symptom vectors, to detect and isolate cascading faults and their root causes. The blending of a digital twin and reasoning in this framework will enable FAVER to: i) isolate faults that have both local and cascading effects on the concerned systems, ii) identify faults that were previously unknown, and iii) resolve ambiguous faults. This paper explains the different steps involved in developing FAVER and how this framework can be demonstrated in the aforementioned scenarios with the help of different use cases. This paper also talks about the challenges to be faced while developing this framework and ways to overcome them.