Purpose: Large cell neuroendocrine carcinoma (LCNEC) is a high-grade neuroendocrine malignancy that, like small cell lung cancer (SCLC), is associated with an absence of druggable oncogenic drivers and dismal prognosis. In contrast to SCLC, however, there is little evidence to guide optimal treatment strategies which are often adapted from SCLC and non-small cell lung cancer (NSCLC) approaches. Experimental design: To better define the biology of LCNEC, we analyzed cell line and patient genomic data and performed immunohistochemistry and single-cell (sc)RNAseq of core needle biopsies from LCNEC patients and preclinical models. Results: Here, we demonstrate that the presence or absence of YAP1 distinguishes two subsets of LCNEC. The YAP1-high subset is mesenchymal and inflamed and characterized, alongside TP53 mutations, by co-occurring alterations in CDKN2A/B and SMARCA4. Therapeutically, the YAP1-high subset demonstrates vulnerability to MEK and AXL targeting strategies, including a novel preclinical AXL CAR-T cell. Meanwhile, the YAP1-low subset is epithelial and immune-cold and more commonly features TP53 and RB1 co-mutations, similar to those observed in pure SCLC. Notably, the YAP1-low subset is also characterized by expression of SCLC subtype-defining transcription factors - especially ASCL1 and NEUROD1 - and, as expected given its transcriptional similarities to SCLC, exhibits putative vulnerabilities reminiscent of SCLC, including Delta-like ligand 3 (DLL3) and CD56 targeting, as with novel preclinical DLL3 and CD56 CAR T-cells, and DNA damage repair (DDR) inhibition. Conclusion: YAP1 defines distinct subsets of LCNEC with unique biology. These findings highlight the potential for YAP1 to guide personalized treatment strategies for LCNEC.