Programmed cell death plays a pivotal role in maintaining tissue homeostasis, and recent advancements in cell biology have uncovered PANoptosis—a novel paradigm integrating pyroptosis, apoptosis, and necroptosis. This study investigates the implications of PANoptosis in melanoma, a formidable skin cancer known for its metastatic potential and resistance to conventional therapies. Leveraging bulk and single‐cell transcriptome analyses, machine learning modeling, and immune correlation assessments, we unveil the molecular intricacies of PANoptosis in melanoma. Single‐cell sequencing identifies diverse cell types involved in PANoptosis, while bulk transcriptome analysis reveals key gene sets correlated with PANoptosis. Machine learning algorithms construct a robust prognostic model, demonstrating consistent predictive power across diverse cohorts. Patients with different cohorts can be divided into high‐risk and low‐risk groups according to this PANoptosis score, with the high‐risk group having a significantly worse prognosis. Immune correlation analyses unveil a link between PANoptosis and immunotherapy response, with potential therapeutic implications. Mutation analysis and enrichment studies provide insights into the mutational landscape associated with PANoptosis. Finally, we used cell experiments to verify the expression and function of key gene PARVA, showing that PARVA was highly expressed in melanoma cell lines, and after PARVA is knocked down, cell invasion, migration, and colony formation ability were significantly decreased. This study advances our understanding of PANoptosis in melanoma, offering a comprehensive framework for targeted therapeutic interventions and personalized medicine strategies in combating this aggressive malignancy.