Glioblastoma (GBM) is a prevalent type of malignancy within the central nervous system (CNS) that is associated with a poor prognosis. The standard treatment for GBM includes the surgical resection of the tumor, followed by radiotherapy and chemotherapy; yet, despite these interventions, overall treatment outcomes remain suboptimal. The blood–brain barrier (BBB), which plays a crucial role in maintaining the stability of brain tissue under normal physiological conditions of the CNS, also poses a significant obstacle to the effective delivery of therapeutic agents to GBMs. Recent preclinical studies have demonstrated that nanomedicine delivery systems (NDDSs) offer promising results, demonstrating both effective GBM targeting and safety, thereby presenting a potential solution for targeted drug delivery. In this review, we first explore the various strategies employed in preclinical studies to overcome the BBB for drug delivery. Subsequently, the results of the clinical translation of NDDSs are summarized, highlighting the progress made. Finally, we discuss potential strategies for advancing the development of NDDSs and accelerating their translational research through well-designed clinical trials in GBM therapy.