In this study, we have analysed ultrastructurally the mechanism of epithelial fusion and perforation during the development of branchial fissures in the larva and bud of the colonial urochordate Botryllus schlosseri. Perforation of membranes represents an important process during embryogenesis, occurring to create communication between two separate compartments. For example, all chordate embryos share the formation of pharyngeal plates, which are constituted of apposed endodermal and ectodermal epithelia, which have the capacity to fuse and perforate. Although the process of perforation is extremely common, its cellular mechanism remains little understood in detail, because of the complexity of the structures involved. In B. schlosseri, two epithelial monolayers, the peribranchial and the branchial ones, with no interposed mesenchymal cells, participate in pharyngeal perforation. Blood flows in the interspace between the two cellular leaflets. Apico-lateral zonulae occludentes seal the cells of each epithelium, so that the blood compartment is separated from the environment of the peribranchial and branchial chambers; here, sea water will flow when the zooid siphons open. Stigmata primordia appear as contiguous thickened discs of palisading cells of branchial and peribranchial epithelia. The peribranchial component invaginates to contact the branchial one. Here, the basal laminae intermingle, compact, and are degraded, while the intercellular space between the two epithelia is reduced to achieve the same width as that found between the lateral membranes of adjacent cells. Cells involved in this fusion rapidly change their polarity: they acquire a new epithelial axis, because part of the adhering basal membrane becomes a new lateral surface, whereas the original lateral membranes become new apical surfaces. Before disassembling the old tight junctions and establishing communication between branchial and peribranchial chambers, cells of the stigmata rudiments form new tight junctions organised as distinct entities, so that the structural continuum of the epithelial layers is maintained throughout the time of fusion and perforation.