Carbon nanotube (CNT)-based
electrodes are cheap, highly performing,
and robust platforms for the fabrication of electrochemical sensors.
Engineering programmable DNA nanotechnologies on the CNT surface can
support the construction of new electrochemical DNA sensors providing
an amperometric output in response to biomolecular recognition. This
is a significant challenge, since it requires gaining control of specific
hybridization processes and functional DNA systems at the interface,
while limiting DNA physisorption on the electrode surface, which contributes
to nonspecific signal. In this study, we provide design rules to program
dynamic DNA structures at the surface of single-walled carbon nanotubes
electrodes, showing that specific DNA interactions can be monitored
through measurement of the current signal provided by redox-tagged
DNA strands. We propose the use of pyrene as a backfilling agent to
reduce nonspecific adsorption of reporter DNA strands and demonstrate
the controlled formation of DNA duplexes on the electrode surface,
which we then apply in the design and conduction of programmable DNA
strand displacement reactions. Expanding on this aspect, we report
the development of novel amperometric hybridization platforms based
on artificial DNA structures templated by the small molecule melamine.
These platforms enable dynamic strand exchange reactions orthogonal
to conventional toehold-mediated strand displacement and may support
new strategies in electrochemical sensing of biomolecular targets,
combining the physicochemical properties of nanostructured carbon-based
materials with programmable nucleic acid hybridization.