The numerical time-dependent three-dimensional model [Kovalets, I.V. and Maderich, V.S.: 2001, Int. J. Fluid Mech. Res. 30, 410-429] of the heavy gas dispersion in the atmospheric boundary layer has been improved by parameterizing momentum and heat fluxes on the surface of Earth using Monin-Obukhov similarity theory. Three parameterizations of heat exchange with the surface of Earth were considered: (A) formula of Yaglom A.M. and Kader B.A. [1974, J. Fluid Mech. 62, 601-623] for forced convection, (B) interpolation formula for mixed convection and (C) similarity relationship for mixed convection [Kader, B.A. and Yaglom, A.M.: 1990, J. Fluid Mech. 212, 637-662]. Two case studies were considered. In the first study based on experiment of Zhu et al., J. Hazard Mater 62, , the interaction of an isothermal heavy gas plume with an atmospheric surface layer was simulated. It was found that stable stratification in the cloud essentially suppresses the turbulence in the plume, reducing the turbulent momentum flux by a factor of down to 1/5 in comparison with the undisturbed value. This reduction essentially influences velocities in the atmospheric boundary layer above the cloud, increasing the mean velocity by a factor of up to 1.3 in comparison with the undisturbed value. A simulation of cold heavy gas dispersion was carried out in the second case based on field experiment BURRO 8. It was shown that both forced and free convections under moderate wind speeds significantly influence the plume. The relative rms and bias errors of prediction the plume's height were σ H ≈ 30% and ε H = −10%, respectively, for parameterization B, while for A and C the errors were σ H ≈ 80% and ε H ≈ −65%. It is therefore advised to use the simple parameterization B in dense gas dispersion models.