Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In genetic engineering, developing a breed with a desired trait is a search and optimization problem that sometimes requires many generations of field and laboratory experiments for an optimal solution to be found. The nature of the problem requires that a stochastic optimization algorithm be applied in the metaheuristic search rather than using a deterministic or mathematical approach. In the search for drought-tolerant cowpea, this study applied a genetic algorithm as a predictive analytics tool in the genetic engineering of three native cowpea landraces (Dan muzakkari, Gidigiwa, and Dan mesera) selected from Northern Nigeria (specifically from Kontagora in Niger State of Nigeria). The three cowpea species were subjected to mutagenic treatments using gamma irradiation and Ethyl Methane Sulphonate (EMS). Doses applied include 200, 400, 600, and 800 Gray of gamma irradiation and 0.372% v/v of EMS. Both treated and untreated cowpea landraces were planted and observed. Mutation-induced breeding aims to deepen the drought-tolerant trait of the cowpea mutants to survive conditions in drought-prone Northern Nigeria. The statistical analysis of the agro-morphological and yield parameters of the first mutant generation (M1 generation) indicates that mutagenic treatments have a positive impact on both the yield and the survival of the three landraces as all the treated landraces yielded better than the control, particularly the treatments combination of 600gray and 372% v/v of EMS. Also, the predictive outcomes of the computational simulation that was implemented in Python programming indicate that these local cultivars are developing drought-tolerant genetic variability. For the three computational experiments, the stochastic optimizer (genetic algorithm) converged at the 9412th, 9717th, and 14338th generations respectively. Such predictive analytics information is useful for guiding decision-making by researchers and breeders in the crop improvement program.
In genetic engineering, developing a breed with a desired trait is a search and optimization problem that sometimes requires many generations of field and laboratory experiments for an optimal solution to be found. The nature of the problem requires that a stochastic optimization algorithm be applied in the metaheuristic search rather than using a deterministic or mathematical approach. In the search for drought-tolerant cowpea, this study applied a genetic algorithm as a predictive analytics tool in the genetic engineering of three native cowpea landraces (Dan muzakkari, Gidigiwa, and Dan mesera) selected from Northern Nigeria (specifically from Kontagora in Niger State of Nigeria). The three cowpea species were subjected to mutagenic treatments using gamma irradiation and Ethyl Methane Sulphonate (EMS). Doses applied include 200, 400, 600, and 800 Gray of gamma irradiation and 0.372% v/v of EMS. Both treated and untreated cowpea landraces were planted and observed. Mutation-induced breeding aims to deepen the drought-tolerant trait of the cowpea mutants to survive conditions in drought-prone Northern Nigeria. The statistical analysis of the agro-morphological and yield parameters of the first mutant generation (M1 generation) indicates that mutagenic treatments have a positive impact on both the yield and the survival of the three landraces as all the treated landraces yielded better than the control, particularly the treatments combination of 600gray and 372% v/v of EMS. Also, the predictive outcomes of the computational simulation that was implemented in Python programming indicate that these local cultivars are developing drought-tolerant genetic variability. For the three computational experiments, the stochastic optimizer (genetic algorithm) converged at the 9412th, 9717th, and 14338th generations respectively. Such predictive analytics information is useful for guiding decision-making by researchers and breeders in the crop improvement program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.