The motivation for use of organic electro-optic materials derives from (1) the inherently fast (sub-picosecond) response of Ï-electron systems in these materials to electrical perturbation making possible device applications with gigahertz and terahertz bandwidths, (2) the potential for exceptionally large (e.g., 1000 pm/V) electro-optic coefficients that would make possible devices operating with millivolt drive voltages, (3) light weight, which is a concern for satellite applications, and (4) versatile processability that permits rapid fabrication of a wide variety of devices including conformal and flexible devices, three dimensional active optical circuitry, hybrid organic/silicon photonic circuitry, and optical circuitry directly integrated with semiconductor VLSI electronics. The most significant concerns associated with the use of organic electro-optic materials relate to thermal and photochemical stability, although materials with glass transition temperatures on the order of 200°C have been demonstrated and photostability necessary for long term operation at telecommunication power levels has been realized. This communication focuses on explaining the theoretical paradigms that have permitted electro-optic coefficients greater than 300 pm/V (at telecommunication wavelengths) to be achieved and on explaining likely improvements in electro-optic activity that will be realized in the next 1-2 years. Systematic modifications of materials to improve thermal and photochemical stability are also discussed.