An innovative neurodynamical model of epidemics in social networks – the Neuro-SIR – is introduced. Susceptible–Infected–Removed (SIR) epidemic processes are mechanistically modeled as analogous to the activity propagation in neuronal populations. The workings of infection transmission from individual to individual through a network of social contacts, is driven by the dynamics of the threshold mechanism of leaky integrate-and-fire neurons. Through this approach a dynamically evolving landscape of the susceptibility of a population to a disease is formed. In this context, epidemics with varying velocities and scales are triggered by a small fraction of infected individuals according to the configuration of various endogenous and exogenous factors representing the individuals’ vulnerability, the infectiousness of a pathogen, the density of a contact network, and environmental conditions. Adjustments in the length of immunity (if any) after recovery, enable the modeling of the Susceptible–Infected–Recovered–Susceptible (SIRS) process of recurrent epidemics. Neuro-SIR by supporting an impressive level of heterogeneities in the description of a population, contagiousness of a disease, and external factors, allows a more insightful investigation of epidemic spreading in comparison with existing approaches. Through simulation experiments with Neuro-SIR, we demonstrate the effectiveness of the #stayhome strategy for containing Covid-19, and successfully validate the simulation results against the classical epidemiological theory. Neuro-SIR is applicable in designing and assessing prevention and control strategies for spreading diseases, as well as in predicting the evolution pattern of epidemics.