Please cite this article as: Zhang, C., Curiel-Sosa, J.L., Quoc Bui, T., A novel interface constitutive model for prediction of stiffness and strength in 3D braided composites, Composite Structures (2016), doi: http://dx.doi. org/ 10.1016/j.compstruct.2016.12.042 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Maximum stress criteria and a gradual degradation scheme are applied to predict the damage evolution of yarns and matrix. A user-material subroutine VUMAT based on finite element package ABAQUS/Explicit is developed for these constitutive models. The stiffness and strength properties of 3D braided composites are derived from the calculated stress-strain curves under typical loading cases. The damage mechanism of constituents especially the interface is revealed in these simulation processes. The effects of the interface parameters on the mechanical properties of composites are investigated, which provides a reference for optimizing design and control of the interface properties of 3D braided composites.