2022
DOI: 10.1016/j.imavis.2022.104375
|View full text |Cite
|
Sign up to set email alerts
|

Progressive ShallowNet for large scale dynamic and spontaneous facial behaviour analysis in children

Abstract: COVID-19 has severely disrupted every aspect of society and left negative impact on our life. Resisting the temptation in engaging face-to-face social connection is not as easy as we imagine. Breaking ties within social circle makes us lonely and isolated, that in turns increase the likelihood of depression related disease and even can leads to death by increasing the chance of heart disease. Not only adults, children's are equally impacted where the contribution of emotional competence to social competence ha… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 19 publications
(20 reference statements)
0
0
0
Order By: Relevance
“…Ke et al [4] mentioned that wearable health monitoring systems have the advantage of being non-invasive to the human body when performing real-time monitoring, and that HAR ensures the accuracy of the information collected and the safety of the subject while circumventing issues such as privacy protection. Qayyum et al [5] summarized the application of wearable device data for chronic disease prevention and management, noting that effective data feedback can increase human activity, enhance patient health, improve disease prognosis, reduce healthcare costs and help clinical users make healthcare decisions; Acharya et al [6] proposed an integrated sensor network, the Care Net and used for remote health care and healthcare; Tsai and Chen [7] summarized the application of wirelessly transmitted sensor networks in rehabilitation medicine, noting that sensor feedback can help in the immediate monitoring of patients undergoing rehabilitation training, and that this information is also of research value at the level of helping to correct rehabilitation postures.…”
Section: Introductionmentioning
confidence: 99%
“…Ke et al [4] mentioned that wearable health monitoring systems have the advantage of being non-invasive to the human body when performing real-time monitoring, and that HAR ensures the accuracy of the information collected and the safety of the subject while circumventing issues such as privacy protection. Qayyum et al [5] summarized the application of wearable device data for chronic disease prevention and management, noting that effective data feedback can increase human activity, enhance patient health, improve disease prognosis, reduce healthcare costs and help clinical users make healthcare decisions; Acharya et al [6] proposed an integrated sensor network, the Care Net and used for remote health care and healthcare; Tsai and Chen [7] summarized the application of wirelessly transmitted sensor networks in rehabilitation medicine, noting that sensor feedback can help in the immediate monitoring of patients undergoing rehabilitation training, and that this information is also of research value at the level of helping to correct rehabilitation postures.…”
Section: Introductionmentioning
confidence: 99%
“…In [55], the authors present an advanced lightweight shallow learning approach to emotion classification by using the skip connection for the recognition of facial behaviour in children. In contrast to previous deep neural networks, they limit the alternative path for the gradient in the early part of the network by a gradual increase with the depth of the network.…”
mentioning
confidence: 99%