Prohibited Item Detection Within X-Ray Security Inspection Images Based on an Improved Cascade Network
Qingqi ZHANG,
Xiaoan BAO,
Ren WU
et al.
Abstract:Automatic detection of prohibited items is vital in helping security staff be more efficient while improving the public safety index. However, prohibited item detection within X-ray security inspection images is limited by various factors, including the imbalance distribution of categories, diversity of prohibited item scales, and overlap between items. In this paper, we propose to leverage the Poisson blending algorithm with the Canny edge operator to alleviate the imbalance distribution of categories maximal… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.