Most studies suggest that students develop computational thinking (CT) through learning programming. However, when the target of CT is decoupled from programming, emerging evidence challenges the assertion of CT transferability from programming. In this study, CT was operationalized in everyday problem-solving contexts in a learning experiment ( n = 59) that investigated whether learning programming enhances students’ CT skills. Specifically, this study examined the influence of a novel, systematic and micro instructional strategy that is grounded in abstraction and comprised of four independent but related processes – discover, extract, create, and assemble (DECA) towards simplification of problem-solving. Subsidiary questions explored the effects of students’ age, gender, computer proficiency, and prior programming experience on the development of CT. No significant difference was found between the CT skill and programming knowledge of the groups at the posttest. However, within-group paired t-tests showed that the experimental group that integrated DECA had significant improvement in CT but not in the control group across the pretest-posttest axis. Implications of the inconclusive finding about the transfer of programming skills to CT are emphasized and the arguments for disentangling CT from programming are highlighted.