2015
DOI: 10.1016/j.ijproman.2015.07.003
|View full text |Cite
|
Sign up to set email alerts
|

Project selection in project portfolio management: An artificial neural network model based on critical success factors

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

2
74
0
14

Year Published

2017
2017
2022
2022

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 149 publications
(90 citation statements)
references
References 69 publications
2
74
0
14
Order By: Relevance
“…In the soft computing field, it is suggested that AI would yield better predictions than traditional methods. Costantino and Nonino [23] developed an artificial neural network (ANN) for extracting the experience of project managers from a set of past successes and failures to classify the grade of project risk. Mousavi et al [24] proposed an effective AI model applying fuzzy logic and developing new neural networks to improve the decisions for construction project selection.…”
Section: Artificial Intelligence Optimization Methodsmentioning
confidence: 99%
“…In the soft computing field, it is suggested that AI would yield better predictions than traditional methods. Costantino and Nonino [23] developed an artificial neural network (ANN) for extracting the experience of project managers from a set of past successes and failures to classify the grade of project risk. Mousavi et al [24] proposed an effective AI model applying fuzzy logic and developing new neural networks to improve the decisions for construction project selection.…”
Section: Artificial Intelligence Optimization Methodsmentioning
confidence: 99%
“…Financial and non-financial indicators at the project level could assist the decision-making process. According to Costantino, Di Gravio and Nonino (2015), deciding on project critical success factors is an important criterion for PPM, as decision makers deal with probable causes of failures during project selection processes. These authors argued that using artificial neutral networks provides a simpler approach for top manager engagement in the decision-making, facilitating communication loops between project managers and project portfolio managers to assess the riskiness of project success based on the project managers' past experience (Costantino et al, 2015).…”
Section: Literature Reviewmentioning
confidence: 99%
“…According to Costantino, Di Gravio and Nonino (2015), deciding on project critical success factors is an important criterion for PPM, as decision makers deal with probable causes of failures during project selection processes. These authors argued that using artificial neutral networks provides a simpler approach for top manager engagement in the decision-making, facilitating communication loops between project managers and project portfolio managers to assess the riskiness of project success based on the project managers' past experience (Costantino et al, 2015). Maged (2008) describes a multiple criteria decision-making (MCDM) model to find the optimized solutions for R&D projects where resources dependencies pose constraints on the decisionmaking process for project selection.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Según el marco referencial consultado para este trabajo, se han encontrado tres líneas de estudio en los temas de análisis y gestión de proyectos a gran escala desde la inteligencia computacional: (a) técnicas de inteligencia computacional para la selección de proyectos según estructura y escala tecnológica [6]- [8]; (b) algoritmos computacionales para problemas de agendamiento y costo en proyectos específicos [9]- [11], y (c) sistemas de predicción deléxito de proyectos basados en redes neuronales [16]. Sin embargo, no se encontraron referencias que aborden la estimación del avance de megaproyectos de inversión pública desde estas técnicas.…”
Section: Inteligencia Computacional En La Gestión De Proyectosunclassified
“…Se presentará una breve introducción a las mismas invitando al lector a que profundice a través de la consulta de [19] y [20]. En cuanto al marco de interés de este trabajo, se han reportado en la literatura modelos de gestión de proyectos que incluyen redes neuronales y SVM (máquina de soporte vectorial), a manera de ejemplo se mencionan algunos: selecciónóptima de proyectos de innovación tecnológica aplicandoárboles de decisión neurodifusos [6], agendamiento de proyectos según teoría de restricción de recursos con técnica de red neuronal basado en modelo de colonias de hormigas [10], sistemas de selección en portafolio de proyectos con redes neuronales y sistemas difusos [8], [16], predicción de la duración de proyectos con SVM [21], [22] e identificación del riesgo en proyectos por medio de una combinación entre SVM y algoritmos de colonias de hormigas [23].…”
Section: Inteligencia Computacional En La Gestión De Proyectosunclassified