The projections of primary afferents from rostral cervical segments to the brainstem and the spinal cord of the rat were investigated by using anterograde and transganglionic transport techniques. Projections from whole spinal ganglia were compared with those from single nerves carrying only exteroceptive or proprioceptive fibers. Injections of horseradish peroxidase (HRP) or wheat germ agglutinin-horseradish peroxidase conjugate (WGA-HRP) were performed into dorsal root ganglia C2, C3, and C4. Free HRP was applied to the cut dorsal rami C2 and C3, greater occipital nerve, sternomastoid nerve, and to the C1/2 anastomosis, which contains afferents from suboccipital muscles and the atlanto-occipital joint. WGA-HRP injections into ganglia C7 and L5 were performed for comparative purposes. Injections of WGA-HRP or free HRP into rostral cervical dorsal root ganglia and HRP application to C2 and C3 dorsal rami produced labeling in dorsal and ventral horns at the level of entrance, the central cervical nucleus, and in external and main cuneate nuclei. From axons ascending to pontine and descending to upper thoracic spinal levels, medial collaterals were distributed to medial and descending vestibular, perihypoglossal and solitary nuclei, and the intermediate zone and Clarke's nucleus dorsalis in the spinal cord. Lateral collaterals projected mainly to the trigeminal subnucleus interpolaris and to lateral spinal laminae IV and V. Results from HRP application to single peripheral nerves indicated that medial collaterals were almost exclusively proprioceptive, whereas lateral collaterals were largely exteroceptive with a contribution from suboccipital proprioceptive fibers. WGA-HRP injections into dorsal root ganglia C7 and L5 failed to produce significant labeling within vestibular and periphypoglossal nuclei, although they demonstrated classical projection sites within the brainstem and spinal cord. The consistent collateralisation pattern of rostral cervical afferents along their whole rostrocaudal course enables them to contact a variety of precerebellar, vestibulospinal, and preoculomotor neurons. These connections reflect the well-known significance of proprioceptive neck afferents for the control of posture, head position, and eye movements.