Projection of future precipitation change using CMIP6 multimodel ensemble based on fusion of multiple machine learning algorithms: A case in Hanjiang River Basin, China
Dong Wang,
Jiahong Liu,
Qinghua Luan
et al.
Abstract:Projecting precipitation changes is essential for researchers to understand climate change impacts on hydrological cycle. This study projected future precipitation over the Hanjiang River Basin (HRB) based on the multimodel ensemble (ME) of six global climate models from Phase 6 of the Coupled Model Intercomparison Project (CMIP6). An ME method using the fusion of four machine learning (ML) algorithms (random forest [RF], K‐nearest neighbors [KNN], extra tree [ET], and gradient boosting decision tree [GBDT]) w… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.