2020
DOI: 10.48550/arxiv.2004.00667
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Projection Pursuit Gaussian Process Regression

Abstract: A primary goal of computer experiments is to reconstruct the function given by the computer code via scattered evaluations. Traditional isotropic Gaussian process models suffer from the curse of dimensionality, when the input dimension is high. Gaussian process models with additive correlation functions are scalable to dimensionality, but they are very restrictive as they only work for additive functions. In this work, we consider a projection pursuit model, in which the nonparametric part is driven by an addi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 37 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?