It is important to realize rapid and accurate prediction of fluid viscosity in a multiphase reservoir oil system for improving oil production in petroleum engineering. This study proposed three viscosity prediction models based on machine learning approaches. The prediction accuracy comparison results show that the random forest (RF) model performs accurately in predicting the viscosity of each phase of the reservoir, with the lowest error percentage and highest
R
2
values. And the RF model is tremendously fast in a computing time of 0.53 s. In addition, sensitivity analysis indicates that for a multiphase reservoir system, the viscosity of each phase of the reservoir is determined by different factors. Among them, the viscosity of oil is vital for oil production, which is mainly affected by the molar ratio of gas to oil (MR-GO).