On the basis of patterns of anterograde, retrograde, and bi-directional transport of tracers from both the superior olivary nucleus (SON) and the torus semicircularis (TS), we report anatomical changes in brainstem connectivity across metamorphic development in the bullfrog, Rana catesbeiana. In early and late stages of larval development (Gosner stages 25–37), anterograde or bi-directional tracers injected into the SON produce terminal/fiber label in the contralateral SON and in the ipsilateral TS. Between stages 38–41 (deaf period), only sparse or no terminal/fiber label is visible in these target nuclei. During metamorphic climax (stages 42–46), terminal/fiber label reappears in both the contralateral SON and in the ipsilateral TS, and now also in the contralateral TS. Injections of retrograde tracers into the SON fail to label cell bodies in the ipsilateral TS in deaf period animals, mirroring the previously-reported failure of retrograde transport from the TS to the ipsilateral SON during this developmental time. Bilateral cell body label emerges in the dorsal medullary nucleus and the lateral vestibular nucleus bilaterally as a result of SON transport during the late larval period, while cell body label in the contralateral TS emerges during climax. At all larval stages, injections into the SON produce anterograde and retrograde label in the medial vestibular nucleus bilaterally. These data show anatomical stability in some pathways and plasticity in others during larval development, with the most dramatic changes occurring during the deaf period and metamorphic climax. Animals in metamorphic climax show patterns of connectivity similar to that of froglets and adults, indicating the maturation during climax of central anatomical substrates for hearing in air.