Abstract:Each vector space that is endowed with a quadratic form determines its Clifford algebra. This algebra, in turn, contains a distinguished group, known as the Lipschitz group. We show that only a quotient of this group remains meaningful in the context of projective metric geometry. This quotient of the Lipschitz group can be viewed as a point set in the projective space on the Clifford algebra and, under certain restrictions, leads to an algebraic description of so-called kinematic mappings.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.