Prior to the widespread availability of left ventricular assist devices (LVADs), many end-stage heart failure patients were forced to fight over scarce transplant resources or face the reality of impending death. For those considered transplant-ineligible, due to medical or psychosocial factors, symptom palliation and end-of-life care were the only available options. This all changed dramatically following the publication of the landmark Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) trial, 1 a multicentre investigation designed to determine the impact of a pulsatile LVAD compared with optimal pharmacotherapy in a high-risk cohort of patients with advanced disease. Boasting a remarkable 48 % reduction in mortality with LVAD support, 1 the results of this study promptly ushered in a historic evolution in mechanical circulatory support. Now, little more than a decade after REMATCH was presented, more than 10,000 patients have been implanted with a durable LVAD.2 Novel design changes have ensued, such that modern devices are substantially smaller and no longer pulsatile. By embracing continuous-flow technology, the field has seen incremental gains in patient survival and quality of life. Currently, over 80 % of patients are alive at one year, while two-year survival following device implantation now exceeds 70 per cent. With this in mind, the following review will highlight the epidemiology, symptomatology, complications and management goals for ventricular arrhythmias in the contemporary LVAD era.
Evolution of Ventricular Assist Device TherapyFrom a historical perspective, LVADs have evolved considerably in a relatively short period of time. Initial first-generation LVADs were designed to be volume-displacement pumps. They provided pulsatile flow, as a blood-containing chamber would fill and then empty in concert with the heart's native contraction. These pumps were relatively large and required a number of moving parts in order to function optimally.As a result, they were difficult to implant in smaller patients and were prone to wear over time. In order to overcome some of these limitations, second generation LVADs employed continuous-flow technology through the use of an axial rotor. These devices were considerably smaller, could be implanted in a broader population of patients, and demonstrated enhanced durability. In addition, systemic pulsatility was abandoned in exchange for continuous ventricular unloading. Newer third-generation devices -designed with either hydrodynamically-or magnetically-elevated rotors -now provide cardiac support to advanced heart failure patients via centrifugal flow. Though they have only recently been introduced into the marketplace, and are currently the subject of ongoing investigation, implant volumes for these novel LVADs have been
AbstractFew innovations in medicine have so convincingly and expeditiously improved patient outcomes more than the development of the left ventricular assist device (LVAD). Where optimal pharma...