A simple and efficient catalytic system [BBIM]Br–SnCl2
for the oxidation of benzyl alcohol using hydrogen peroxide as the oxidant has been developed. Reaction conditions such as the catalyst dose, the solvents, reaction temperature, reaction time, and the amount of hydrogen peroxide were investigated. The optimum reaction conditions identified were 0.11 g of catalyst, no solvent, 65°C, 15 min, and 2 mmol of hydrogen peroxide. Oxidation of various alcohols was also investigated under the optimized conditions. The catalyst [BBIM]Br–SnCl2
can be easily recovered and reused for six reaction runs without significant loss of catalytic activity, because the Sn species of the catalyst can be coordinated with the imidazole ring of the ionic liquid. The reused catalyst was further characterized by Fourier transform infrared spectroscopy to evaluate its chemical properties. The results proved that the [BBIM]Br–SnCl2
catalyst was stable and reusable for the oxidation reactions. A possible mechanism for the oxidation of benzyl alcohol to benzaldehyde is proposed.