Silicon (Si) anodes are promising candidates for Li-ion batteries due to their high specific capacity and low operating potential. Implementation has been challenged by the significant Si volume changes during (de)lithiation and associated growth/regrowth of the solid electrolyte interface (SEI). In this report, fluorinated local high concentration electrolytes (FLHCEs) were designed such that each component of the electrolyte (solvent, salt, diluent) is fluorinated to modify the chemistry and stabilize the SEI of high (30%) silicon content anodes. FLHCEs were formulated to probe the electrolyte salt concentration and ratio of the fluorinated carbonate solvents to a hydrofluoroether diluent. Higher salt concentrations led to higher viscosities, conductivities, and contact angles on polyethylene separators. Electrochemical cycling of Si-graphite/NMC622 pouch cells using the FLHCEs delivered up to 67% capacity retention after 100 cycles at a C/3 rate. Post-cycling X-ray photoelectron spectroscopy analyses of the Si-graphite anodes indicated the FLHCEs formed a LiF rich SEI. The findings show that the fluorinated local high concentration electrolytes contribute to stabilizing the Si-graphite electrode over extended cycling.