Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The wine industry generates large volumes of wastewater originating from various processes and operations carried out during wine production. Winery wastewater (WWW) is characterized by highly variable flows and loadings. Indeed, more than half of the annual wastewater flow and load is produced during the vintage season, when grape is harvested and grape juice is handled and managed. Spain is one of the world's largest wine-producing countries. Nevertheless, in most of the Spanish wineries wastewater is still not properly treated or managed. In this context, constructed wetlands (CWs) constitute a suitable alternative to conventional systems (e.g. activated sludge systems, membrane bioreactors) for WWW treatment due to their low cost, low energy requirement, easy operation and maintenance and their integration into the landscape. From a technical point of view, full-scale applications of CWs have demonstrated to reduce more than 90% of the organic pollutants and solids from WWW producing suitable water for multiple reuse purposes such as irrigation. Moreover, primary treatments of CWs can produce sludge which can be stabilised in sludge treatment wetlands (STWs) producing biofertilizers and soil conditioners. The production of reclaimed water and biofertilizers from WWW can promote the circular economy in the wine sector increasing their sustainability. Although CWs application in the wine sector has been widely proved from a technical point of view, there are still no studies which assess and quantify their environmental benefits in the context of circular economy. This PhD Thesis aims to assess and quantify the environmental benefits of CWs for WWW treatment compared with existing and conventional solutions. To address this objective, a life cycle assessment (LCA), greenhouse gas (GHG) emissions measurements and a carbon footprint (CFP) evaluation were carried out comparing CW systems with conventional technologies and other existing alternatives (i.e. activated sludge system and third-party management). This research has been carried out in the frame of the WETWINE project (http://wetwine.eu/) which aimed to promote environmentally friendly and innovative solutions to treat effluents produced by wine industries in the South-West of Europe. Thus, this research was based on the study of different full-scale systems implemented in wineries located in Galicia (Spain), Portugal and Southern France. In particular, a CW system has been designed and implemented in a winery located in Galicia, in which experimental activities have been carried out. The results of the LCA showed that the environmental impacts of CWs were between 1.5 and 180 times lower than the third-party management alternative and between 1 and 10 times lower than the activated sludge system. GHG emissions (carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4)) were monitored in a CW and an activated sludge systems using an on-site Fourier transform infrared spectroscopy (FTIR) gas analyser. Results highlighted that surface emission rates from the CW system were lower than those released by the activated sludge system. Furthermore, seasonally, daily and instantaneous variability in emissions as well as spatial variability were recorded and reported. The CFP of the CW system was up to 42 times lower in comparison with the third-party management and up to 4 times lower than the activated sludge system. Finally, an economic assessment was conducted. CWs can reduce winery costs associated with WWW treatment up to 50% for the construction and up to 98% for the operation and maintenance. Finally, this PhD Thesis assessed and quantified, for the first time, the environmental benefits of CWs for WWW treatment. CWs were proven to be a sustainable solution for WWW and sludge treatment, since they are an environmentally friendly and cost-effective alternative which can promote the circular economy in wineries enabling sludge and water treatment and reuse on-site. La indústria del vi genera grans volums d’aigües residuals procedents de diversos processos i operacions realitzats durant la producció del vi. Les aigües residuals de celler (ARC) es caracteritzen per tenir uns cabals i càrregues molt variables. De fet, més de la meitat del cabal i càrrega produïts durant l’any es concentren durant l’època de verema, quan es recull el raïm i es produeix el suc de raïm. Espanya és considerada un dels països amb major producció de vi. No obstant això, a la majoria dels cellers Espanyols les aigües residuals encara no són tractades o gestionades adequadament. En aquest context, els aiguamolls construïts (AC) són una alternativa als sistemes convencionals (p. ex. Sistema de fangs activats, bioreactors de membrana) per al tractament de les ARC ja que tenen un baix cost, baix requeriment d’energia, fàcil operació i manteniment i una bona integració al paisatge. Des d’un punt de vista tècnic, s’ha demostrat que les aplicacions d’AC a escala real redueixen més d’un 90% dels contaminats orgànics i dels sòlids de les ARC produint aigua apta per múltiples usos de reutilització com el reg. A més, el tractament primari dels AC pot produir fangs que poden ser estabilitzats a aiguamolls de tractament de fangs per a produir biofertilitzants i adobs orgànics. La producció d’aigua regenerada i biofertilitzants a partir de les ARC pot promoure l’economia circular al sector vitivinícola augmentant la seva sostenibilitat. Tot i que l’aplicació dels AC al sector vitivinícola ha estat àmpliament provada des d’un punt de vista tècnic, encara no existeixen estudis que avaluïn i quantifiquin els seus beneficis ambientals en el context de l’economia circular. Aquesta tesi doctoral té com a objectiu avaluar i quantificar els beneficis ambientals dels AC per al tractament de les ARC en comparació amb les solucions existents i convencionals. Per abordar aquest objectiu, s’ha dut a terme una avaluació del cicle de vida (ACV), mesures de gasos d’efecte hivernacle (GEH) i una avaluació de la petjada de carboni comparant els sistemes d’AC amb tecnologies convencionals i altres alternatives existents (és a dir, el sistema de fangs activats i la gestió per tercers). Aquesta investigació s’ha realitzat en el marc del projecte WETWINE (http://wetwine.eu/) que va tenir com a objectiu promoure solucions innovadores i respectuoses amb el medi ambient per al tractament d’efluents produïts per la industria vitivinícola al sud-oest d’Europa. Per això, aquesta investigació s’ha basat en diferents sistemes a escala real implementats a bodegues ubicades a Galícia (Espanya), Portugal i sud de França. En particular, s’ha dissenyat i implementat un sistema d’AC a un celler situat a Galícia, on s’ha dut a terme activitats experimentals. Els resultats de l'ACV van mostrar que els impactes ambientals dels AC eren entre 1,5 i 180 vegades inferior que la gestió per tercers i entre 1 i 10 vegades inferior que el sistema de fangs activats. Les emissions de GEH (és a dir, diòxid de carboni (CO2), òxid nitrós (N2O) i metà (CH4)) es van monitoritzar en un sistema de fangs activats i AC utilitzant un analitzador de gasos d'espectroscòpia infraroja per transformada de Fourier (FTIR) in situ. Els resultats van destacar que les taxes d'emissió superficial del sistema d'AC van ser més baixes que les generades pel sistema de fangs activats. A més, es va registrar i documentar variabilitat estacional, diària i instantània a les emissions, així com variabilitat espacial. La petjada de carboni del sistema d'AC era fins a 42 vegades inferior en comparació amb la gestió per tercers i fins a 4 vegades inferior al sistema de fangs activats. Finalment, aquesta tesi ha avaluat i quantificat, per primera vegada, els beneficis ambientals dels AC per al tractament d’ARC. S’ha demostrat que són una solució sostenible per al tractament d’aigües residuals i fangs a les bodegues ja que són una alternativa respectuosa amb el medi ambient i rentable econòmicament que pot promoure l’economia circular permetent el tractament i reutilització de fangs i aigües in situ. Els resultats de la investigació d’aquesta tesi poden ajudar a impulsar la implementació dels AC al sector vitivinícola, així com a difondre els seus beneficis ambientals per guanyar més acceptació social.
The wine industry generates large volumes of wastewater originating from various processes and operations carried out during wine production. Winery wastewater (WWW) is characterized by highly variable flows and loadings. Indeed, more than half of the annual wastewater flow and load is produced during the vintage season, when grape is harvested and grape juice is handled and managed. Spain is one of the world's largest wine-producing countries. Nevertheless, in most of the Spanish wineries wastewater is still not properly treated or managed. In this context, constructed wetlands (CWs) constitute a suitable alternative to conventional systems (e.g. activated sludge systems, membrane bioreactors) for WWW treatment due to their low cost, low energy requirement, easy operation and maintenance and their integration into the landscape. From a technical point of view, full-scale applications of CWs have demonstrated to reduce more than 90% of the organic pollutants and solids from WWW producing suitable water for multiple reuse purposes such as irrigation. Moreover, primary treatments of CWs can produce sludge which can be stabilised in sludge treatment wetlands (STWs) producing biofertilizers and soil conditioners. The production of reclaimed water and biofertilizers from WWW can promote the circular economy in the wine sector increasing their sustainability. Although CWs application in the wine sector has been widely proved from a technical point of view, there are still no studies which assess and quantify their environmental benefits in the context of circular economy. This PhD Thesis aims to assess and quantify the environmental benefits of CWs for WWW treatment compared with existing and conventional solutions. To address this objective, a life cycle assessment (LCA), greenhouse gas (GHG) emissions measurements and a carbon footprint (CFP) evaluation were carried out comparing CW systems with conventional technologies and other existing alternatives (i.e. activated sludge system and third-party management). This research has been carried out in the frame of the WETWINE project (http://wetwine.eu/) which aimed to promote environmentally friendly and innovative solutions to treat effluents produced by wine industries in the South-West of Europe. Thus, this research was based on the study of different full-scale systems implemented in wineries located in Galicia (Spain), Portugal and Southern France. In particular, a CW system has been designed and implemented in a winery located in Galicia, in which experimental activities have been carried out. The results of the LCA showed that the environmental impacts of CWs were between 1.5 and 180 times lower than the third-party management alternative and between 1 and 10 times lower than the activated sludge system. GHG emissions (carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4)) were monitored in a CW and an activated sludge systems using an on-site Fourier transform infrared spectroscopy (FTIR) gas analyser. Results highlighted that surface emission rates from the CW system were lower than those released by the activated sludge system. Furthermore, seasonally, daily and instantaneous variability in emissions as well as spatial variability were recorded and reported. The CFP of the CW system was up to 42 times lower in comparison with the third-party management and up to 4 times lower than the activated sludge system. Finally, an economic assessment was conducted. CWs can reduce winery costs associated with WWW treatment up to 50% for the construction and up to 98% for the operation and maintenance. Finally, this PhD Thesis assessed and quantified, for the first time, the environmental benefits of CWs for WWW treatment. CWs were proven to be a sustainable solution for WWW and sludge treatment, since they are an environmentally friendly and cost-effective alternative which can promote the circular economy in wineries enabling sludge and water treatment and reuse on-site. La indústria del vi genera grans volums d’aigües residuals procedents de diversos processos i operacions realitzats durant la producció del vi. Les aigües residuals de celler (ARC) es caracteritzen per tenir uns cabals i càrregues molt variables. De fet, més de la meitat del cabal i càrrega produïts durant l’any es concentren durant l’època de verema, quan es recull el raïm i es produeix el suc de raïm. Espanya és considerada un dels països amb major producció de vi. No obstant això, a la majoria dels cellers Espanyols les aigües residuals encara no són tractades o gestionades adequadament. En aquest context, els aiguamolls construïts (AC) són una alternativa als sistemes convencionals (p. ex. Sistema de fangs activats, bioreactors de membrana) per al tractament de les ARC ja que tenen un baix cost, baix requeriment d’energia, fàcil operació i manteniment i una bona integració al paisatge. Des d’un punt de vista tècnic, s’ha demostrat que les aplicacions d’AC a escala real redueixen més d’un 90% dels contaminats orgànics i dels sòlids de les ARC produint aigua apta per múltiples usos de reutilització com el reg. A més, el tractament primari dels AC pot produir fangs que poden ser estabilitzats a aiguamolls de tractament de fangs per a produir biofertilitzants i adobs orgànics. La producció d’aigua regenerada i biofertilitzants a partir de les ARC pot promoure l’economia circular al sector vitivinícola augmentant la seva sostenibilitat. Tot i que l’aplicació dels AC al sector vitivinícola ha estat àmpliament provada des d’un punt de vista tècnic, encara no existeixen estudis que avaluïn i quantifiquin els seus beneficis ambientals en el context de l’economia circular. Aquesta tesi doctoral té com a objectiu avaluar i quantificar els beneficis ambientals dels AC per al tractament de les ARC en comparació amb les solucions existents i convencionals. Per abordar aquest objectiu, s’ha dut a terme una avaluació del cicle de vida (ACV), mesures de gasos d’efecte hivernacle (GEH) i una avaluació de la petjada de carboni comparant els sistemes d’AC amb tecnologies convencionals i altres alternatives existents (és a dir, el sistema de fangs activats i la gestió per tercers). Aquesta investigació s’ha realitzat en el marc del projecte WETWINE (http://wetwine.eu/) que va tenir com a objectiu promoure solucions innovadores i respectuoses amb el medi ambient per al tractament d’efluents produïts per la industria vitivinícola al sud-oest d’Europa. Per això, aquesta investigació s’ha basat en diferents sistemes a escala real implementats a bodegues ubicades a Galícia (Espanya), Portugal i sud de França. En particular, s’ha dissenyat i implementat un sistema d’AC a un celler situat a Galícia, on s’ha dut a terme activitats experimentals. Els resultats de l'ACV van mostrar que els impactes ambientals dels AC eren entre 1,5 i 180 vegades inferior que la gestió per tercers i entre 1 i 10 vegades inferior que el sistema de fangs activats. Les emissions de GEH (és a dir, diòxid de carboni (CO2), òxid nitrós (N2O) i metà (CH4)) es van monitoritzar en un sistema de fangs activats i AC utilitzant un analitzador de gasos d'espectroscòpia infraroja per transformada de Fourier (FTIR) in situ. Els resultats van destacar que les taxes d'emissió superficial del sistema d'AC van ser més baixes que les generades pel sistema de fangs activats. A més, es va registrar i documentar variabilitat estacional, diària i instantània a les emissions, així com variabilitat espacial. La petjada de carboni del sistema d'AC era fins a 42 vegades inferior en comparació amb la gestió per tercers i fins a 4 vegades inferior al sistema de fangs activats. Finalment, aquesta tesi ha avaluat i quantificat, per primera vegada, els beneficis ambientals dels AC per al tractament d’ARC. S’ha demostrat que són una solució sostenible per al tractament d’aigües residuals i fangs a les bodegues ja que són una alternativa respectuosa amb el medi ambient i rentable econòmicament que pot promoure l’economia circular permetent el tractament i reutilització de fangs i aigües in situ. Els resultats de la investigació d’aquesta tesi poden ajudar a impulsar la implementació dels AC al sector vitivinícola, així com a difondre els seus beneficis ambientals per guanyar més acceptació social.
This article reviews investigations in which Canna indica was utilized in constructed wetlands (CW) for wastewater treatment of a variety types. It is strongly urged that ornamental flowering plants be used in CWs as monoculture or mixed species to improve the appearance of CWs whilst still treating wastewater. Plants play important roles in CWs by giving the conditions for physical filtration of wastewater, a large specific surface area for microbial growth, and a source of carbohydrates for bacteria. They absorb nutrients and integrate them into plant tissues. They release oxygen into the substrate, establishing a zone in which aerobic microorganisms can thrive and chemical oxidation can occur. They also provide wildlife habitat and make wastewater treatment system more visually attractive. The selection of plant species for CW is an important aspect during the CW design process. Canna indica’s effectiveness in CWs has shown encouraging results for eliminating contaminants from wastewater. There is still a scarcity of information on the mechanisms involved in removal of specific contaminants such as pharmaceuticals, personal care products, hormones, pesticides and steroids and their potential toxicity to the plants. Therefore, this paper reviews some published information about the performance of Canna indica in wastewater treatment, as well as potential areas for future research.
The aim of the current work is to evaluate the effect of a mixture of olive mill wastewater (OMWW) and urban wastewater (UW) on constructed wetland (CW) substrate physicochemical parameters and to study the abundance and behaviour of microbial community at different depths. In this regard, substrate samples were investigated at tree depth levels (0-10cm, 10-20cm and 20-30cm) inside a pilot scale CW treating the mixture. In order to compare the obtained results treating the mixture with the conventional case, a control (CW pilot plant treating only UW) was implemented. Result shows that an increase in electrical conductivity (from 134.78 to 222.33µS/cm in 0-10cm and from 131.25 to 283.33 µS/cm in 10-20cm), total dissolved salts (from 65.45 to 108.67 mg/kg in 0-10cm and from 64.33 to 135.3 mg/kg in 10-20 cm), total organic carbon (from 0.86 to 6.84%), total nitrogen (from 0.1 mg/kg to 0.45, 0.43 and 0.41 mg/kg, in 0-10cm, 10-20cm and 20-30cm respectively), and C/N ratio occurred in the substrate after the treatment of the mixture. As for the microbiological parameters, treating the mixture by CW results in the increasing of yeast and fungi concentration in the substrate which contributes probably to optimize the biodegradation of non-easily degraded organic compound such as polyphenol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.