We synthesize a new sandwich‐like silica@Ni@silica multicore–shell catalyst. Firstly, Ni phyllosilicate (NiPS) is supported on silica nanospheres by a simple ammonia evaporation method. Then NiPS is coated with a layer of mesoporous silica to obtain a core–shell NiPS@silica structure by the hydrolysis of tetraethylorthosilicate (TEOS). The thickness of the shell can be tuned by varying the amount of TEOS. After calcination and H2 reduction at high temperature, multiple small Ni nanoparticles (≈6 nm) are generated and supported on the inner silica core but also encapsulated within the outer mesoporous silica shell. This silica@Ni@silica multicore–shell catalyst shows a high and stable conversion (≈60 %, gas hourly space velocity=60 000 mL h−1 gcat−1) for the dry reforming of methane (DRM) at 600 °C, whereas pristine NiPS deactivates quickly because of heavy carbon formation. We investigated the spent catalysts by using thermogravimetric analysis and TEM and found that there is almost no carbon formation for this new multicore–shell catalyst. Compared with a conventional Ni@silica core–shell catalyst, our multicore–shell catalyst is much easier to synthesize and the process does not require any toxic organic solvents. We believe that this strategy to make a multicore–shell catalyst can be applied to more nanomaterials and extended to other catalytic reactions besides DRM.