Although not as lethal as variola virus (VARV), the cause of smallpox, monkeypox virus (MPXV) represents a threat to public health, with important infection rates and mortality in several African countries and signs of spreading worldwide. MPXV may establish new reservoirs in non-endemic countries and can be considered a possible biological weapon. Human-to-human MPXV transmission is increasing with a growing susceptibility, coincident with the declining herd immunity against smallpox. The emerging threat of MPXV highlights the urgent need for protection from new zoonotic infections, as mankind is completely unprepared for encounters with new viruses. Preventive vaccination remains the most effective control against orthopoxviruses (OPXVs) such as MPXV and prime-boost vaccination strategies can significantly influence vaccine efficacy and enhance immune responses. Our study aimed at characterizing potential vaccine candidates against OPXV infections in a murine model using DNA, viral and protein recombinant vaccines using different prime-boost regimens. The experiments employed Vaccinia virus (VACV) A33, B5, L1, and A27 envelope proteins as immunogens for both priming and boosting. Priming was carried out using a mixture of four plasmids (4pVAXmix), and boosts employed fowlpox (FWPV) recombinants (4FPmix) and/or the purified recombinant proteins (4protmix), all of them expressing the same antigens. One or two doses of the same immunogens were tested and identical protocols were also compared for intranasal (i.n.) or intramuscular (i.m.) viral administration, before challenge with the highly pathogenic VACV VVIHD−J strain. Our results show that a single dose of any combined immunogen elicited a very low antibody response. Protein mixtures administered twice boosted the humoral response of DNA immunizations by electroporation (e. p.), but did not protect from viral challenge. The antibody neutralizing titer was inversely correlated with animals’ weight loss, which was initially similar in all of the groups after the challenge, but was then reversed in mice that had been primed twice with the DNA recombinants and boosted twice with the FWPV recombinants.