Indirubin can be applied as an anti-cancer drug for inhibition of brain tumors. However, its performance is reduced due to hydrophobicity. In this study, we synthesized cationic human serum albumin (CHSA) nanoparticle by a new hybrid approach for improvement the surface chemistry of albumin and investigate the amount of indirubin loaded CHSA nanoparticle. In this study, the generated mechanical force from a high-pressure homogenizer (HPH) was used to make nanoparticles with a certain size with narrow polydispersity. The results indicated that the size of indirubin loaded CHSA nanoparticles were 130 nm and their zeta potential were +9. Besides, the encapsulation efficiency and drug loading capacity were found to be 85% and 5.8 %, respectively. To the best to our knowledge, this is the first time that indirubin has been used in albumin nanoparticles. In this study, indirubin loaded CHSA nanoparticles was shown can be a potential candidate for drug delivery in the treatment of glioblastoma. Moreover, the cationized form allows the chemical agent to be transmitted to the brain.