2022
DOI: 10.48550/arxiv.2201.09624
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Propagating uncertainty in a network of energy models

Abstract: Computational models are widely used in decision support for energy system operation, planning and policy. A system of models is often employed, where model inputs themselves arise from other computer models, with each model being developed by different teams of experts. Gaussian Process emulators can be used to approximate the behaviour of complex, computationally intensive models; this type of emulator both provides the predictions and quantifies uncertainty about the predicted model output. This paper prese… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?