Purpose
This study aims to examine the plane wave reflection problem in micropolar orthotropic magneto-thermoelastic half space, considering the influence of impedance as a boundary in a nonlocal elasticity.
Design/methodology/approach
This study presents the novel formulation of governing partial differential equations for micropolar orthotropic medium with impact of nonlocal thermo-elasticity under magnetic field.
Findings
This study provides the numerical results validation for a particular numerical data and expression for the amplitude ratios of reflected waves and identifies the existence of four different waves, namely, quasi longitudinal displacement
qCLD-wave, quasi thermal wave
qCT-wave, quasi transverse displacement
qCTD-wave and quasi-transverse micro-rotational
qCTM-wave. The study derives the velocity equation giving the speed and phase velocity of these waves. The study also shows that the small-scale size effect gives significant impact on phase velocity.
Research limitations/implications
The graphical analysis examines the variation of speeds and coefficients of attenuation of these waves due to frequency, magnetic field and nonlocal parameters. Also, significant conclusions on the variation of reflection coefficient against nonlocal parameter, frequency, impedance parameter and angle of incidence are provided graphically.
Practical implications
The creation of more effective micropolar orthotropic anisotropic materials which are very useful in the daily life and their applications in earth science are greatly impacted by the findings of this study.
Originality/value
The authors of the submitted document initiated and produced it collectively, with equal contributions from all members.