At present, malware is still a major security threat to computer networks. However, only a fraction of users with some security consciousness take security measures to protect computers on their own initiative, and others who know the current situation through social networks usually follow suit. This phenomenon is referred to as conformity psychology. It is obvious that more users will take countermeasures to prevent computers from being infected if the malware spreads to a certain extent. This paper proposes a deterministic nonlinear SEIQR propagation model to investigate the impact of conformity psychology on malware propagation. Both the local and global stabilities of malware-free equilibrium are proven while the existence and local stability of endemic equilibrium is proven by using the central manifold theory. Additionally, some numerical examples and simulation experiments based on two network datasets are performed to verify the theoretical analysis results. Finally, the sensitivity analysis of system parameters is carried out.