An experimental investigation is reported on the role of molecular reorientational nonlinearity in the spectral evolution of multifilamentation patterns induced by spatial modulation instability (MI) in a nonlinear Kerr medium. The influence of molecular reorientational Kerr nonlinear response on the spatial MI is analyzed theoretically by the standard stability analysis. The spatial MI gain spectra obtained by experimental measurements were found to agree with the theoretical derivation. In addition, by changing the launch average power, we also analyze the spatial spectral behavior of the optical pattern in such media. It is shown that, for higher launch average power, there will be secondary spatial stripes, manifesting as the original spatial modulation frequency doubling in the spatial frequency domain, which originated from the molecular reorientational Kerr nonlinearity response.