Air-mists are key elements in the secondary cooling of modern thin steel slab continuous casters. The selection of water, W, and air, A, flow rates, and pressures in pneumatic nozzles open up a wide spectrum of cooling possibilities by their influence on droplet diameter, d, droplet velocity, v, and water impact flux, w. Nonetheless, due to the harsh environment resulting from the high temperatures and dense mists involved, there is very little information about the correlation between heat flux extracted, Àq, and mist characteristics, and none about the dynamics of drop-wall interactions. For obtaining both kinds of information, this work combines a steady-state heat flux measuring method with a visualization technique based on a high-speed camera and a laser illumination system. For wall temperatures, T w , between~723 K and~1453 K (~450°C and~1180°C), which correspond to film boiling regime, it was confirmed that Àq increases with increase in v, w, and T w and with decrease in d. It should be noticed, however, that the increase in w generally decreases the spray cooling effectiveness because striking drops do not evaporate efficiently due to the interference by liquid remains from previous drops. Visualization of the events happening close to the surface also reveals that the contact time of the liquid with the surface is very brief and that rebounding, splashing, sliding, and levitation of drops lead to ineffective contact with the surface. At the center of the mist footprint, where drops impinge nearly normal to the surface those with enough momentum establish intimate contact with it before forming a vapor layer that pushes away the remaining liquid. Also, some drops are observed sliding upon the surface or levitating close to it; these are drops with low momentum which are influenced by the deflecting air stream. At footprint positions where oblique impingement occurs, frequently drops are spotted sliding or levitating and liquid films flowing in from inner positions are seen generating vapor cushions after having stayed in contact with the surface. Visualization of events taking place under high,~500 kPa, and low,~200 kPa, air nozzle pressure, p a , conditions suggests that the considerably larger heat extraction obtained under high p a is related to more frequent impingement of finer and faster drops that result in the formation of a dense fog of tiny secondary drops that moves tangentially close to the surface.