Low-frequency fast and slow magnetosonic waves propagating in electron ion plasmas with damping effects through ions and neutral atoms collisions are investigated. Linear wave analysis is performed to obtain dispersion relation. The reductive perturbation method is applied and it is shown that fast and slow modes of nonlinear magnetosonic wave are governed by damped Korteweg-de Vries (DKdV) equation in the presence of ion neutral collisions in plasmas. The analytical solution of DKdV soliton is presented under the assumption of weak collisional effects and numerical solutions of DKdV equation are also obtained using two-level finite difference scheme with the help of Runge-Kutta method at different plasma parameters. The damping of nonlinear fast and slow magnetosonic wave structures at different times are discussed in the context of space plasma situations where ions and neutral atoms collisions exist.