2013
DOI: 10.1016/j.jbiomech.2013.08.006
|View full text |Cite
|
Sign up to set email alerts
|

Propagation of soft tissue artifacts to the center of rotation: A model for the correction of functional calibration techniques

Abstract: This paper presents a mathematical model for the propagation of errors in body segment kinematics to the location of the center of rotation. Three functional calibration techniques, usually employed for the gleno-humeral joint, are studied: the methods based on the pivot of the instantaneous helical axis (PIHA) or the finite helical axis (PFHA), and the "symmetrical center of rotation estimation" (SCoRE). A procedure for correcting the effect of soft tissue artifacts is also proposed, based on the equations of… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

3
15
0

Year Published

2014
2014
2019
2019

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 16 publications
(18 citation statements)
references
References 37 publications
3
15
0
Order By: Relevance
“…Since the mode amplitudes, , can in principle be estimated together with bone pose, the proposed model architecture is appropriate for incorporation in various kinds of BPEs: single-body BPEs (Alexander and Andriacchi, 2001), multi-body BPEs (Richard et al, 2012), and algorithms based on a functional approach (de Rosario et al, 2013). The choice of embedding a model describing only the STA rigid component in a BPE is supported by the following considerations:…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…Since the mode amplitudes, , can in principle be estimated together with bone pose, the proposed model architecture is appropriate for incorporation in various kinds of BPEs: single-body BPEs (Alexander and Andriacchi, 2001), multi-body BPEs (Richard et al, 2012), and algorithms based on a functional approach (de Rosario et al, 2013). The choice of embedding a model describing only the STA rigid component in a BPE is supported by the following considerations:…”
Section: Resultsmentioning
confidence: 99%
“…This is normally done using quaternions\attitude vectors and translation vector, or transformation matrices (de Rosario et al, 2013, Richard et al, 2012 that entail specific algebra and constraints (e.g., unitary quaternions, orthogonal matrices). This procedure, overly complicated from the computational point of view, can be avoided by using the modal representation, which is more convenient in optimising the BPE.…”
Section: Introductionmentioning
confidence: 99%
“…Furthermore, our findings concur with previous results using larger marker clusters, indicating our approach was robust. For example, Barre et al (2013) andDe Rosario et al (2013) determined that the rigid body movement (translation and rotation) of the marker cluster was larger than that of the nonrigid component. de Rosario et al (2012) also noted that the nonrigid component of the marker cluster was filtered out of the data set and, therefore, did not introduce any kinematic errors in joint kinematics, which was also the case in this study.…”
Section: Discussionmentioning
confidence: 99%
“…A considerable amount of work has already been devoted to the problem of improving the accuracy of measurements of joint angles of the arm [9], [10], [11], [12], [13]. These mocap systems are based on reflective markers placed on the user's arm and tracked by the infra-red (IR) cameras.…”
Section: Related Workmentioning
confidence: 99%
“…First, θ i,1 and θ i,2 are based on the difference in orientation of the sensors and marker plates, not on the difference in orientation of the sensors and bones. The orientation of the bones is estimated with the IR-camera mocap system and marker plates which are realigned with the bones at every arm position in order to minimize the effects that human tissue has on the plates' orientation [7], [9], [10], [11], [12], [13]. Second, the coordinate system of the IR-camera mocap system is referenced to the earth's gravity and magnetic north with a level and digital compass respectively.…”
Section: B Correlation Between Rmse and Body Indicesmentioning
confidence: 99%