In this paper, we give an analytical demonstration of electromagnetic induced transparency (EIT) resonance by a simple photonic device consisting of two grafted resonators (metamaterials of type Epsilon Negative Gauchy (ENG)) of lengths d2 and d3. Then, we study theoretically the transmission spectrum and the dispersion relation of periodic photonic comb-like waveguides system built of periodic segments of length d1 (of right-handed material). The electrical permittivity, ε, of the two asymmetric resonators with lengths d2 and d3, depends on the frequency of the incident waves (ENG material). The presence of geometrical (ENG resonators) defects inside the perfect structure creates the defect modes inside the band gaps. Consequently, we demonstrate the existence of two filtered frequencies. This structure can be used as a new photonic filter in the microwave range with an important quality factor and a high transmission rate.