The desire to achieve an adaptive prognostics regression learning processes of physical and empirical phenomenon is a complex task and open problem in radio frequency telecommunication engineering. One key method to solving such complex task or problems is by means of numerical based optimisation algorithms. The Levenberg–Marquardt algorithm (LMA) is an efficient nonlinear parametric machine learning based modelling algorithm with optimal, fast, and accurate convergence speed. This paper proposes and demonstrates the real-time application of the LMA in developing a log-distance like propagation loss model based on received radio strength measurements conducted over deployed long term evolution (LTE) eNodeBs antennas in three different propagation areas. The LTE eNodeB signal propagation areas were selected to reflect typical urban, suburban and rural terrains which represent urban, suburban and rural terrains. The heights of the three eNodeBs are 30, 28 and 32m respectively and each operate at 2.6GHz carrier frequency with 10MHz channel bandwidths. The resultant outcome of the proposed propagation loss modelling using LMA indicates a high approximation efficacy over the popular Gauss-Newton algorithm (GNA) modelling method, which has been used to benchmark the process. Precisely, the developed propagation loss model using LMA method attained lower maximum absolute error (MABE) of 7.73, 14.57and 10.53 for urban, suburban and rural terrains compared to the ones developed by GNA which yielded 15.19, 16.59 and 13.05 MABE values. The improved approximation performance of the LMA over the GNA can be ascribed to its capacity handle multiple free parameters and attain optimum solution irrespective of the selected values of initial guess parameters.