A new power-exponent-phase vortex beam with nonlinear phase winding has shown flexible control freedom compared with conventional vortex beams. In order to further enrich the modulation freedom and expand the ability of self-healing to meet current application requirements, we conducted a detailed study on the characteristics of the Airy transform of the new power-exponent-phase vortex beam. The influences of the Airy function, the power exponent, and the topological charge on normalized intensity and phase distributions are investigated theoretically and experimentally. More importantly, the self-healing properties of the new power-exponent-phase vortex beam with and without the Airy transform are compared. This shows that the new power-exponent-phase vortex beam with the Airy transform exhibits better self-healing ability when obstructed by obstacles. This study has potential applications in optical trapping and free-space optical communication.