Based on the extended Huygens-Fresnel principle, we derive an analytical expression for the beam width of polychromatic partially coherent Hermite-Gaussian array (PPCHGA) beams propagating through non-Kolmogorov turbulence and study in detail the effect of bandwidth, array parameters, and non-Kolmogorov turbulence on the beam-width spreading. We show that the beam width of PPCHGA beams increases with increase in the bandwidth, beam number, and relative distance of beam separation. The spreading of polychromatic array beams with increasing generalized exponent parameter is smaller than that of monochromatic array beams under the same conditions. The results are illustrated by numerical examples.