Lewy body dementia (LBD) represents the second most common neurodegenerative dementia but is a quite underexplored therapeutic area. Nepflamapimod (1) is a brain‐penetrant selective inhibitor of the alpha isoform of the mitogen‐activated serine/threonine protein kinase (MAPK) p38α, recently repurposed for LBD due to its remarkable antineuroinflammatory properties. Neuroprotective propargylamines are another class of molecules with a therapeutical potential against LBD. Herein, we sought to combine the antineuroinflammatory core of 1 and the neuroprotective propargylamine moiety into a single molecule. Particularly, we inserted a propargylamine moiety in position 4 of the 2,6‐dichlorophenyl ring of 1, generating neflamapimod‐propargylamine hybrids 3 and 4. These hybrids were evaluated using several cell models, aiming to recapitulate the complexity of LBD pathology through different molecular mechanisms. The N‐methyl‐N‐propargyl derivative 4 showed a nanomolar p38α‐MAPK inhibitory activity (IC50 = 98.7 nM), which is only 2.6‐fold lower compared to that of the parent compound 1, while displaying no hepato‐ and neurotoxicity up to 25 μM concentration. It also retained a similar immunomodulatory profile against the N9 microglial cell line. Gratifyingly, at 5 μM concentration, 4 demonstrated a neuroprotective effect against dexamethasone‐induced reactive oxygen species production in neuronal cells that was higher than that of 1.