This research studies natural rubber (NR) composite blends prepared with recycled polyethylene (PE), polyurethane waste (PU), silica (SiO2), and aluminum trihydroxide (ATH) under the proper mixing conditions using an internal mixer and a two-roll mill. The mechanical, impact, dynamic mechanical, and thermal properties, together with flammability, were investigated. NR/PU composites filled with a specific SiO2/ATH concentration resulted in excellent flame-retardant properties without using PE. Adding PE causes poor flammability, while using PU and SiO2 prevents flame extensibility of the composites. In addition, SiO2 and ATH synergistically improved both mechanical and dynamical mechanical properties. This is attributed to the reinforcement of SiO2 particles inside the matrix, whereas the ATH releases water as a flame retardant. The V-0 composites tested with UL-94 showed acceptable heat resistance, strength, and durability, making them suitable for interior and exterior applications in buildings without the lightweight requirement.