The application of explicit dynamics to simulate quasi-static events often becomes impractical in terms of computational cost. Different solutions have been investigated in the literature to decrease the simulation time and a family of interesting, increasingly adopted approaches are the ones based on the proper orthogonal decomposition (POD) as a model reduction technique. In this study, the algorithmic framework for the integration of the equation of motions through POD is proposed for discrete linear and nonlinear systems: a low dimensional approximation of the full order system is generated by the so-called proper orthogonal modes (POMs), computed with snapshots from the full order simulation. Aiming to a predictive tool, the POMs are updated in itinere alternating the integration in the complete system, for the snapshots collection, with the integration in the reduced system. The paper discusses details of the transition between the two systems and issues related to the application of essential and natural boundary conditions (BCs). Results show that, for one-dimensional (1D) cases, just few modes are capable of excellent approximation of the solution, even in the case of stress–strain softening behavior, allowing to conveniently increase the critical time-step of the simulation without significant loss in accuracy. For more general three-dimensional (3D) situations, the paper discusses the application of the developed algorithm to a discrete model called lattice discrete particle model (LDPM) formulated to simulate quasi-brittle materials characterized by a softening response. Efficiency and accuracy of the reduced order LDPM response are discussed with reference to both tensile and compressive loading conditions.